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Winding angle distribution of 2D random walks with traps
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Abstract. We study analytically the asymptotic behaviour of the average probabilityP(n, t)
for the trajectory of a 2D Brownian particle wandering in the presence of randomly distributed
traps to windn times around a given point after a timet . It is shown thatP(n, t) ∼
exp(−c√t)(1+ x2)−1 with x ∼ n/√t , where the first exponent represents a well known long-
time tail of the probability that a particle will not be trapped.

The properties of random walks with various topological constraints has attracted a great
deal of theoretical interest for many years. Apart from apparent practical relevance to the
physics of polymers and Abrikosov vortex lines in superconductors (see e.g. [1]), studies of
such random walks make profound and intimate connections to many beautiful mathematical
results. Perhaps the most prominent example is the problem of the winding angle distribution
in two dimensions. The winding angle of a planar random walk is, by definition, the total
continuous angleθ(t) = 2πn(t) swept by a Brownian particle around a prescribed point
after a timet . It was found by Spitzer [2] that the asymptotic probability to windn times
is given by a Cauchy law:

P(n, t) ∼ 1

1+ x2
x ∼ n

ln t
at t →∞. (1)

This result was later confirmed by many authors by employing different techniques (see e.g.
[3–5]). In general, one could also ask how many times a particle has wound around a set
of N prescribed points [6] or an excluded disk in a 2D plane [7].

Let us now suppose that our Brownian particle cannot wander freely, but instead can
be irreversibly trapped by the impurities located at some randomly distributed points in a
plane. It is known that the properties of such a system differ drastically from those of an
ideal random walk. For instance, the survival probability is given byP(t) ∼ exp(−c√t)
[8], while the mean square displacement is sub-diffusional:〈r2〉 ∼ √t [9]. The purpose of
this paper is to discover how the presence of traps affects the winding angle distribution
function.

The probability distribution for a random walk starting at a pointr′ to end at a pointr
after a timet satisfies the diffusion equation

∂P

∂t
= D∇2P − U(r)P . (2)

HereD is the diffusion coefficient andU(r) = U0
∑

i δ(r−Ri ) is the random ‘potential’,
which is the probability per unit time for a particle to be trapped (U0 > 0). The positions
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Ri of point-like traps are distributed uniformly in a plane according to the Poisson law with
mean densityρ. The solution of equation (2) is given by the Wiener path integral formula:

P(r, t; r′, 0|U) =
∫ r(t)=r

r(0)=r′
Dr(τ ) exp

{
−
∫ t

0
dτ

(
1

4D
ṙ2(τ )+ U(r(τ ))

)}
. (3)

The probability for a closed random walk withr = r′ of ‘length’ t to wind n times
around the origin in a given distribution of traps can be calculated by inserting aδ-function
constraint [3] in (3), so that

P(n, t |U) =
〈
δ

(
n− 1

2π

∫ t

0
dτ θ̇(τ )

)〉
P(r,t;r,0|U)

(4)

whereθ(t) is the angle between the radius-vectorr(t) and some fixed direction in the plane
(note thatn can be non-integer). Writing theδ-function as an integral over an auxiliary
variablep, we arrive at

P(n, t |U) =
∫ ∞
−∞

dp e2π ipn
∫ r(t)=r

r(0)=r
Dr(τ )

× exp

{
−
∫ t

0
dτ

(
1

4D
ṙ2(τ )+ U(r(τ ))+ ipθ̇(τ )

)}
. (5)

If one assumes that the starting pointr is not fixed, then the path integral on the right-hand
side is nothing but the partition function at inverse ‘temperature’ 1/T = t of a particle of
unit charge and massm = (2D)−1 moving in a random potential and in a solenoid field
localized at the origin, the solenoid carrying a fluxφ = −2πp. For the average probability
we then have

P(n, t) ≡ 〈P(n, t |U)〉U =
∫ ∞
−∞

dφ

2π

∫ ∞
0

dE e−iφne−EtN(E, φ) (6)

whereN(E, φ) is the average density of states. Since we are interested in the asymptotic
behaviour ofP(n, t) at larget , all we have to do is to calculate the asymptotics ofN(E, φ)

at smallE, which is called the ‘Lifshitz tail’ [10].
From the analysis of a random walk with traps but without a solenoid it is known

that atE → 0 the main contribution to the density of states comes from the large regions
in real space which are free of traps. The probability to find such a region of areaS is
exponentially small:p(S) ∼ e−ρS . From the elementary quantum mechanics we know
that the ground state energy of a particle in a 2D potential well with radiusR is given
by E(R) ∼ DR−2 ∼ DS−1. Therefore,S(E) ∼ D/E, and the density of states is
N(E) ∼ p(S(E)) ∼ exp(−constantρD/E). More formally, such exponentially small tails
of the density of states correspond to the contribution of instantons [11], which are spatially
localized solutions of the saddle-point equations in the functional-integral representation of
the problem [12, 13]. Our strategy is as follows. First, we formulate the problem in the
language of quantum field theory with some effective actionS. Then, we find an explicit
form of the instanton solution. The last step is to calculate the asymptotic behaviour of
P(n, t) at larget due to the instanton contributions.

The Schr̈odinger equation for a quantum particle moving in the field of a solenoid and
in the potentialU(r) is as follows:

Hψ ≡ D(−i∇ −A(r))2ψ + U(r)ψ = Eψ (7)

whereAθ = φ/2πr is the vector potential created by the solenoid. The density of states is
proportional to the imaginary part of the Green functionGE(r, r) = 〈r|(E−H + i0)−1|r〉,
which can be calculated by standard means of the quantum field theory. Using the replica
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trick, the disorder average of the (Euclidean) generating functional can be performed, and
we have in the limitn→ 0

GE(r, r) =
∫
D2ϕ(r)e−S[ϕ(r)]ϕ1(r)ϕ̄1(r) (8)

whereϕ is ann-component Bose field andD2ϕ =∏n
a=1Dϕ̄aDϕa. The action is

S =
∫

d2r {ϕ̄(−E +D(−i∇ −A)2)ϕ+ ρ(1− e−U0ϕ̄ϕ)}. (9)

At E < 0 the action is always positive, so that the field theory is stable and the imaginary
part is zero. At 0< E � Ec = ρU0 (Ec being the mean value of the random potential)
there is a metastable vacuum stateϕ = 0. In this case, the small-E asymptotics of the
imaginary part of the Green function is determined by a non-trivial saddle point of the
action [11] and, with exponential accuracy,

N(E, φ) ∼ e−Sinst(E,φ). (10)

Due to the rotational symmetry of equation (9) in then-dimensional replica space, the
saddle-point solution (instanton) has the form

ϕa(r) = ϕ(r)ea (11)

whereea is theath component of an arbitraryn-component unit vector. From (9) and (11)
we obtain the following equation for the functionϕ(r) which is assumed to be rotationally
invariant in real space (i.e.ϕ(r) = ϕ(r)eimθ with m = 0):

−D1

r

d

dr

(
r

d

dr

)
ϕ +Dν

2

r2
ϕ + Ece−U0ϕ

2
ϕ = Eϕ (12)

whereν = |φ|/2π . Let us introduce the dimensionless variables:

r = ξx ϕ(x) = U−1/2
0 f (x).

Here ξ2 = D/E is a characteristic scale of the problem, which is nothing but the typical
length of diffusion in timet = E−1. Equation (12) can then be written as

− 1

x

d

dx

(
x

d

dx

)
f + ν

2

x2
f + α2e−f

2
f = f (13)

whereα2 = Ec/E.
Since equation (13) is a nonlinear differential equation, we are able to find only an

approximate solution. As shown in Appendix, atE � Ec (i.e. α � 1) one can replace the
‘potential’ V (f ) = α2e−f

2
in equation (13) by the potential well with infinitely high walls,

having the shape of a coaxial ring with the inner and outer radiix1 and x2 respectively.
Then the instanton solution inside the ring satisfies the Schrödinger equation for a particle
in the solenoid field, so that

f (x) = A1Jν(x)+ A2Yν(x) at x1 < x < x2 (14)

whereJν(x) andYν(x) are the Bessel functions of the first and second kind respectively. The
positions of the matching pointsx1(ν) andx2(ν) are to be determined from the following
equations:

x1Fν(x1)Jν(x1) = −x2Jν(x2)

x1Fν(x1)Yν(x1) = −x2Yν(x2)
(15)
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where

Fν(x1) = I ′ν(αx1)

Iν(αx1)
= ν

αx1
+ Iν+1(αx1)

Iν(αx1)
.

(Details of the derivation can be found in the appendix.) These equations are valid for
E � Ec and arbitraryν. Going back to the dimensional variables, it is easy to convince
oneself that the instanton action coincides with the area of the ring:

Sinst = 2πρ
∫ r2

r1

dr r = πρξ2(x2
2(ν)− x2

1(ν)). (16)

In the absence of a solenoid (i.e. atν = 0), the solution of equations (15) isx1 = 0, x2 = a,
where a ≈ 2.405 is the first zero of the functionJ0(x). After substitution in (16), the
Lifshitz result [10] is recovered.

At ν 6= 0, due to fast oscillations of the phase factor e−iφn in (6), the main contribution
to the integral comes from smallφ, which allows one to use a perturbative expansion in
powers ofν. We seek a solution of (15) in the form

x1 = δx1(ν) x2 = a + δx2(ν) (αδx1→ 0). (17)

The Bessel functions can be expanded in powers of their index [14]:

Jν(x) = J0(x)+ πν
2
Y0(x)+O(ν2) Yν(x) = Y0(x)− πν

2
J0(x)+O(ν2).

However, one should be careful in dealing with such expressions, since the Bessel functions
are not analytical atx = 0, so that we are able to safely expand only the right-hand sides
of equations (15). Using the small-x expansions of the Bessel functions on the left-hand
sides, we obtain, in the leading order inδx1,2 andν:

1

α

1

0(ν)

(
αδx1

2

)ν
= aJ1(a)δx2− πa

2
Y0(a)ν

1

α

0(ν + 1)

π

(
αδx1

2

)−ν
= aY0(a)

where0(x) is the Gamma function. Therefore, the solution of equations (15) looks as
follows:

x1 = 2

α

(
πaY0(a)α

0(ν + 1)

)−1/ν

' 2

α
(πaY0(a)α)

−1/ν

x2 = a +
(
πY0(a)

2J1(a)
+ 1

πa2J1(a)Y0(a)α2

)
ν ' a + πY0(a)

2J1(a)
ν.

(18)

At ν → 0, x1 vanishes faster thanδx2, so that its contribution to the instanton action can
be neglected. From (16), we then obtain atφ→ 0:

Sinst(E, φ) = πρDa2

E
(1+ b|φ| +O(φ2)) (19)

whereb = Y0(a)

2aJ1(a)
≈ 0.204. A non-analytical dependence on the magnetic flux is related

to the fact that one cannot regard the solenoid field as a small perturbation due tor−2-
singularity at smallr.

Finally, we see from (10) that the asymtotics of the average density of states in the
presence of a solenoid is given by

N(E, φ) ∼ exp

(
−πρDa

2(1+ b|φ|)
E

)
. (20)
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To calculate the pre-exponential factor, one should make an expansion around the instanton
configuration and integrate over all non-zero modes. We, however, shall not proceed in this
way further and restrict ourselves by the exponential accuracy. After substitution of (20) in
(6), we arrive at

P(n, t) ∼
∫ ∞
−∞

dφ
∫ ∞

0
dE e−iφne−Et exp

(
−πρDa

2(1+ b|φ|)
E

)
.

At large t the integral overE can be calculated by the method of steepest descent, resulting
in

P(n, t) ∼
∫ ∞
−∞

dφ e−iφn exp
(
−2a

√
πρDt

√
1+ b|φ|

)
∼ exp(−2a

√
πρDt)

(
1+ n2

cρDt

)−1

(21)

wherec = πa2b2 ≈ 0.756. In calculating the last integral we used the fact that the main
contribution comes from small values of the flux, which justifies an expansion in powers
of φ. The exponential factor on the right-hand side of (21) represents the asymptotic
probability for a particle without solenoid to survive after a timet and coincides with
the result of Balagurov and Vaks [8]. The second factor can thus be interpreted as the
conditional probability for a particle which has survived to windn times around the origin.

It is expedient to compare our results with what is known for other similar systems. For
an ideal random walk without traps, the scaling variable isx = n/ ln t , whose asymptotic
distribution is given by Spitzer’s law (1). For a self-avoiding random walk without traps,
the scaling variablex = n/√ln t has a Gaussian distribution [15, 16]. In that case, due to
the hard-core repulsion, the trajectory wanders farther away from the origin than does an
ideal random walk, which reduces the winding number. In our case, we see that the scaling
variable isx = n/√t , and the asymptotic distribution obeys a Cauchy law. The increase
of the winding number can be qualitatively understood as follows. We are considering the
conditional probability, which implies that the particle has survived until the timet . This,
in turn, means that it spent much of its life in a finite region of the plane almost free of
traps and thus has never wandered too far away from the starting point. Such a restriction
obviously results in increasing entanglement.
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Appendix

We replace the ‘potential’V (f ) = α2e−f
2

in the nonlinear equation (13) by a piecewise
constant effective potential:

Veff(f ) =
{
α2 at f < 1

0 at f > 1.
(A1)
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Figure A1. The effective potentialVeff(f (x)) (light line) and the instanton solutionf (x) (heavy
curve) as functions ofx = r/ξ (α2 = Ec/E � 1).

Then the solution is a piecewise continuous function:

f (x) =


f1(x) at 0< x < x1

f2(x) at x1 < x < x2

f3(x) at x2 < x

(A2)

where the functionsfi(x) obey the following linear equations:

−1

x

d

dx

(
x

d

dx

)
f1,3+ ν

2

x2
f1,3+ α2f1,3 = f1,3

−1

x

d

dx

(
x

d

dx

)
f2+ ν

2

x2
f2 = f2.

(A3)

The solutionf (x) and its derivatives must be continuous functions ofx at x = x1,2.
The positions of the matching pointsx1 and x2 are determined from the conditions
f1(x1) = f2(x1) = 1 andf2(x2) = f3(x2) = 1 (see figure A1).

The solution of equations (A3) looks as follows:

f1 = C1Iν(αx)

f2 = C(1)2 Jν(x)+ C(2)2 Yν(x)

f3 = C3Kν(αx)

(A4)

where Iν(x) andKν(x) are the Bessel functions of imaginary argument. The boundary
conditions read

f1(x1) = f2(x1) = 1, f2(x2) = f3(x2) = 1

f ′1(x1) = f ′2(x1), f
′
2(x2) = f ′3(x2).

(A5)

Substituting (A4) in (A5), we obtain a system of six transcendent equations to determine
C1, C(1,2)2 , C3, x1 andx2. After changing notationsC(1,2)2 = αA1,2, the equations forA1,2
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andx1,2 take the form

A1Jν(x1)+ A2Yν(x1) = α−1

A1Jν(x2)+ A2Yν(x2) = α−1

A1J
′
ν(x1)+ A2Y

′
ν(x1) = I ′ν(αx1)

Iν(αx1)

A1J
′
ν(x2)+ A2Y

′
ν(x2) = K ′ν(αx2)

Kν(αx2)
.

(A6)

In the limit α � 1 the right-hand sides of the first two equations vanish. If one assumes
that x2 ∼ 1, then in the same limit the right-hand side of the last equation tends to−1.
ExcludingA1,2 from (A6), we arrive at equations (15).

It is worth explaining why we choose to split the plane into three different regions. If
there were no solenoid (ν = 0), thenx1 = 0 and the instanton solution would be given by
the Bessel functionJ0(x) which tends to a constant atx → 0. However, ifν 6= 0, then the
naive assumption thatx1 = 0 andf (x) ∼ Jν(x) is not consistent with the condition that
f (x) > 1 everywhere inside the potential well, sinceJν(x) ∼ xν at x → 0. For this reason
one has to introduce the inner matching pointx1 6= 0.
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